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Previous SIG webinar: metrics reloaded

Central question: which validation metrics?

Metrics Reloaded:
From segmentation to calibration

February 17w, 2023
3w installment of the SIG for Challenges webinar series

mature methods

Understanding metric-related pitfallsin
image analysis validation

Reinke et al, Nature Methods, 2024
https://www.nature.com/articles/s41592-023-02150-0

nature methods

Eletrinsrelnaded:remnmlendaﬁﬁ;lsfnr :
image analysis validation

Areapmrsd U Temeedae 70001

Maier-Hein*, Reinke* et al, Nature Methods, 2024
https://www.nature.com/articles/s41592-023-02151-z
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This SIG webinar

Central question: how variable is model performance?
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Al models are evaluated
experimentally

This SIG webinar

Wrongly classified

My model
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This SIG webinar

Central question: how variable is model performance?

Test set
HHHTT
Al models are evaluated Accuracy
experimentally :::::::::: My model 0.92
0000000000
Wrongly classified
0000000000
0000000000
Estimates are variable “““““
0000000000
0000000000




Central question: how variable is model performance?

Al models are evaluated
experimentally

Estimates are variable

This SIG webinar
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Performance variability is crucial for clinical translation

Commonly encountered results tables

Methods Accuracy AUC
Method 1 0.828 0.862
Method 2 0.821 0.857
Method 3 0.847 0.889
Proposed 0.851 0.891




Performance variability is crucial for clinical translation

Commonly encountered results tables

Methods
Method 1
Method 2
Method 3

Proposed

Accuracy
0.828
0.821
0.847
0.851

AUC
0.862
0.857
0.889
0.891

[....] All performance estimates should be

provided with confidence intervals [...]

FDA-2024-D-4488: Artificial Intelligence-Enabled Device Software Functions:
Lifecycle Management and Marketing Submission Recommendations

A U.S. FOOD & DRUG

ADMINISTRATION
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Performance variability is crucial for clinical translation

Commonly encountered results tables

Methods
Method 1
Method 2
Method 3

Proposed

Accuracy
0.828
0.821
0.847
0.851

AUC
0.862
0.857
0.889
0.891

The statistical analysis plays a critical role in the

assessment of [...] ML performance but may be

under-appreciated by many ML developers. [...]
There are still publications that present point

estimates of ML performance without quantification
of uncertainties.

Weijie Chen, Daniel Krainak, Berkman Sahiner, Nicholas Petrick, A Regulatory Science
Perspective on Performance Assessment of Machine Learning Algorithms in Imaging, 2023

A U.S. FOOD & DRUG

ADMINISTRATION

15



1. Current practices

2. Strength of outperformance claims

3. Areas for improvement
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[ 1. Current practices
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Variability reporting in medical imaging Al

MICCAI 2023 papers MICCAI 2023 segmentation papers Performance variability-
(n = 730) (n = 221; systematic review) related data extraction
i )
RQ1: What is the common practice with RQ2: How to estimate missing RQ3: How do Cl widths
respect to variability reporting in the variability parameters based on compare to claimed
medical image analysis community? provided data? improvements in the DSC?J
\

Christodoulou, Evangelia, et al. "Confidence intervals uncovered: Are we ready for real-world medical imaging Al?." International Conference on Medical
Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2024. 18



RQ1: Common reporting practices

200

Ln
]

100

Number of articles

Ln
o

ﬂ J
Variability reported

- Yes - No

Christodoulou, Evangelia, et al. "Confidence intervals uncovered: Are we ready for real-world medical imaging Al?." International Conference on Medical
Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2024. 19



RQ1: Common reporting practices

200
O
o 150
s
= 2.0% (2)
g W0 e
L 39.0% (39)
£
=
Z 50

0 1.0% (1)
Variability reported Cl reported SD reported

- Yes - No Other - Unclear

Christodoulou, Evangelia, et al. "Confidence intervals uncovered: Are we ready for real-world medical imaging Al?." International Conference on Medical
Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2024. 20



RQ1: Common reporting practices

200
O
o 150
-
- 2.0% (2)
g W0 e
L 39.0% (39)
£
2
2 J——‘ 14.9% (7)
—12.8%0 (6)
0 1.0% (1) r J 1 0.6%
Variability reported Cl reported SD reported SD method

- Yes - No Other - Unclear | | SD over independent test set SD from CV

Christodoulou, Evangelia, et al. "Confidence intervals uncovered: Are we ready for real-world medical imaging Al?." International Conference on Medical
Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2024. 21



RQ2: Approximation of missing variability parameters

Commonly encountered results tables

Methods DSC HD95 Scenario 1 (narrow Cl: desired)
Method 1 86.82 43.22
Method 2 87.64 63.68
Method 3 90.67 67.34 7 85 90 95
Proposed method 90.70 67.35 D3]
@
Mean DSC Cl
Unclear from Scenario 2 (wide Cl)
results table

u 85 a0 95
DSC [%]

Christodoulou, Evangelia, et al. "Confidence intervals uncovered: Are we ready for real-world medical imaging Al?." International Conference on Medical
Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2024. 22



RQ2: Approximation of missing variability parameters

RQ2: How to estimate missing
variability parameters based on
provided data?

In other words, can we impute variance from mean?

Christodoulou, Evangelia, et al. "Confidence intervals uncovered: Are we ready for real-world medical imaging Al?." International Conference on Medical
Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2024.
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RQ2: Approximation of missing variability parameters

RQ2: How to estimate missing
variability parameters based on
provided data?

In other words, can we impute variance from mean? S
There are specific cases with an analytical formula (e.g. accuracy)
In general, there is not

Christodoulou, Evangelia, et al. "Confidence intervals uncovered: Are we ready for real-world medical imaging Al?." International Conference on Medical
Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2024. 24



RQ2: Approximation of missing variability parameters

nature communications
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RQ2: How to estimate missing
variability parameters based on
provided data?
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Christodoulou, Evangelia, et al. "Confidence intervals uncovered: Are we ready for real-world medical imaging Al?." International Conference on Medical
Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2024.
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RQ2: Approximation of missing variability parameters

Validation of the SD approximation on 56 past
segmentation challenges
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Christodoulou, Evangelia, et al. "Confidence intervals uncovered: Are we ready for real-world medical imaging Al?." International Conference on Medical
Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2024.
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RQ3: Cl widths vs claims for outperformance
(a) (b)

/\ Median Cl width: 3 percent

points
0.3
\J
a
/\ Median difference between 5 -
E : =
proposed method and second- £ v %
ranked: 1 percent point E N
@
?EIE 0.1

Should we be worried? .t .
00| TR

0.3

0.2

0.1

0.0

Christodoulou, Evangelia, et al. "Confidence intervals uncovered: Are we ready for real-world medical imaging Al?." International Conference on Medical

Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2024.
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[ 2. Strength of outperformance claims

]
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How likely is it that the ranks flip?

Algorithm 1 Algorithm 2

Generated by DALL-E
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Outperformed the state-of-the art... (or not?)

Commonly encountered results tables

Method 1 0.83 0.91

Method 2 0.80 0.89

Method 3 0.83 0.92 =
Proposed 0.84 0.92

method

“As shown in Table 1, our method outperforms
all previously proposed state-of-the-art methods”

Christodoulou, Evangelia, et al. "False Promises in Medical Imaging Al? Assessing Validity of Outperformance Claims" Arxiv preprint, 2025.
https://arxiv.org/abs/2505.04720
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Outperformed the state-of-the art... (or not?)
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B O MICCAI 2023 papers Segmentation + Data extraction:
o (n =740) classification papers Outperformance claims +
(... =221;n._ =126) metric scores
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Christodoulou, Evangelia, et al. "False Promises in Medical Imaging Al? Assessing Validity of Outperformance Claims" Arxiv preprint, 2025.
https://arxiv.org/abs/2505.04720



https://arxiv.org/abs/2505.04720

Outperformed the state-of-the art... (or not?)

* Probability of false claims

— Bayesian approach to estimate whether the relative ranking of methods is likely to have
occurred by chance

— Probability that the second-ranked method (B) was, in fact, performing equally or better than
the first-ranked method (A), given the results reported in the paper

P(pa < r@ eported results) = F @)

True performance Performance
(random variable) reported in the

paper

B: second ranked
method

Christodoulou, Evangelia, et al. "False Promises in Medical Imaging Al? Assessing Validity of Outperformance Claims" Arxiv preprint, 2025.
https://arxiv.org/abs/2505.04720 33
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Outperformed the state-of-the art... (or not?)
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Christodoulou, Evangelia, et al. "False Promises in Medical Imaging Al? Assessing Validity of Outperformance Claims" Arxiv preprint, 2025.
https://arxiv.org/abs/2505.04720 34
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Black dots:
individual
MICCAI 2023
papers

Outperformed the state-of-the art... (or not?)
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Christodoulou, Evangelia, et al. "False Promises in Medical Imaging Al? Assessing Validity of Outperformance Claims" Arxiv preprint, 2025.
https://arxiv.org/abs/2505.04720 35
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Stronger evidence of outperformance calls for test
sets dramatically larger than usual

(a)
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A observed in MICCAI 2023 ﬁ low probability of false claims

Christodoulou, Evangelia, et al. "False Promises in Medical Imaging Al? Assessing Validity of Outperformance Claims" Arxiv preprint, 2025.

https://arxiv.org/abs/2505.04720
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Stronger evidence of outperformance calls for test
sets dramatically larger than usual

(b)
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Christodoulou, Evangelia, et al. "False Promises in Medical Imaging Al? Assessing Validity of Outperformance Claims" Arxiv preprint, 2025.
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{ 3. Areas for improvement
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Computing the mean value: on which dataset?

Mean DSC and HD95

Methods DSC HD95
Method 1 0.892 1.23
Method 2 0.895 1.22
Method 3 0.883 1.32
Proposed 0.897 1.21




Data splitting
0000000000000000

Whole dataset

Single split

Varoquaux and Colliot, Evaluating machine learning models and their diagnostic value, 2023 https://hal.science/hal-03682454
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Data splitting
0000000000000000

Whole dataset

Validation set

Validation set

Validation set

Validation set

Cross-validation

Varoquaux and Colliot, Evaluating machine learning models and their diagnostic value, 2023 https://hal.science/hal-03682454
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Data splitting
0000000000000000

Whole dataset

Can be used to report final performance if no hyperparameter
tuning, no architecture modification
A Not a realistic scenario

Varoquaux and Colliot, Evaluating machine learning models and their diagnostic value, 2023 https://hal.science/hal-03682454

44



Data splitting
0000000000000000

Whole dataset

Validation set

Validation set

Validation set

Validation set

Use to tune hyperparameters, experiment with different
. architectures...
Q Do not use to report final performance (biased)

Varoquaux and Colliot, Evaluating machine learning models and their diagnostic value, 2023 https://hal.science/hal-03682454
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Data splitting
0000000000000 000 00000

Whole dataset
Test set

"..““ ".. Usetoreportfinal

0000 00000000 -

° Do not use to report final performance (biased)

Varoquaux and Colliot, Evaluating machine learning models and their diagnostic value, 2023 https://hal.science/hal-03682454
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Data splitting
0000000000000 000 00000

Whole dataset
Test set

0000 00000000 " " °

(from another dataset)

Varoquaux and Colliot, Evaluating machine learning models and their diagnostic value, 2023 https://hal.science/hal-03682454
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Data splitting
0000000000000 000 00000

Whole dataset

Test set
90000000 0000
0000 00000000 29000
(from
000000000000 Study 00D
performance
\. J

Varoquaux and Colliot, Evaluating machine learning models and their diagnostic value, 2023 https://hal.science/hal-03682454



Computing the mean value: on which dataset?

Mean DSC and HD95 on the test set

Methods DSC HD95
Method 1 0.892 1.23
Method 2 0.895 1.22
Method 3 0.883 1.32
Proposed 0.897 1.21

Paper includes text describing precisely the data splitting
and which splits were used for what purpose
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Summary statistics

Test set
Mean DSC and HD95 on the test set ‘.“‘.. “

Individual

Methods DSC HD95 valuesof 't 2 M3 e Ms Mo My M My
the metric

Method 1 0.892 1.23
e.g. DSCon

Method 2 0.895 1.22 each

Method 3 0.883 1.32 individual

Proposed 0.897 1.21




Mean DSC and HD95 on the test set

Summary statistics

Methods
Method 1
Method 2
Method 3

Proposed

DSC
0.892
0.895
0.883
0.897

HD95
1.23
1.22
1.32
1.21

Individual
values of
the metric

e.g. DSCon
each
individual

Test set

m; m, my My Mg Mg My My My
mean

52



Summary statistics

Test set
DSC and HD95 on the test set ‘..“‘. “
Individual
m,  m, my my mg mg my .. m,;m,
Methods DSC HD95 values of S '
the metric
Method 1 0.892 1.23
e.g. DSCon
Method 2 0.895 1.22 each
- dividual
Method 3 0.883 1.32 eIt
Proposed 0.897 1.21




Summary statistics

Test set

m; m, m3 My Mg Mg . My My

o . J
Summary statistics of Y
central tendency

Mean, median, X% trimmed mean...

Test set

Mg

Summary statistics of m; m, mz m; mg

dispersion J
’ Y

. my, m,

Standard-deviation, inter-quartile range...

o4



/\ Some metrics are only defined on a set

Accuracy and AUC on the test set

Methods
Method 1
Method 2
Method 3

Proposed

Accuracy
0.828
0.821
0.847
0.851

AUC
0.862
0.857
0.889
0.891

Test set
Indicator
_ m; m, mg mgy mg mg m;, .. m_;m,
function

A Important implications for variability

What do we mean by SD of accuracy?
SD of its sampling distribution

55



Reporting variability: which variability?

Methods
Method 1
Method 2
Method 3

Proposed

DSC
0.892 £ 0.017
0.895 £ 0.013
0.883 + 0.012
0.897 + 0.013

+ what?
At least 3 possibilities

Standard-deviation (SD) of the
metric over the test set

2 | Standard-error (SE) of the

summary statistic

Standard-deviation (SD) over
cross-validation (CV)

56



Reporting variability: which variability?

Methods
Method 1
Method 2
Method 3

Proposed

DSC
0.892 £ 0.017
0.895 £ 0.013
0.883 £0.012
0.897 + 0.013

+ what?
At least 3 possibilities

Standard-deviation (SD) of the
metric over the test set

Standard-error (SE) of the

summary statistic

Standard-deviation (SD) over
cross-validation (CV)

S7



SD vs SE

Standard-deviation (SD)

SD of your metric across individuals
(e.g. over test set)

Q Meaning: How variable is your
performance across your set

Its magnitude is independent of n

Descriptive statistic

Standard error (SE)

SD of the sampling distribution of a
statistic (e.g. the mean)

Q Meaning: How precise is the
estimate of the statistic

Shrinks with n (with v/n)

Inferential statistic

58



Sampling distribution

Distribution of a statistic (here the mean) across random samples

True population
i =079 i=078
rls] 02 04 06 om La
u=20.28 I . A —
i = 0.83 fi=0.77
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Sampling distribution

Distribution of a statistic (here the mean) across random samples

Sample 1 - (i = 0.791 - 5D =0.100

True population

a0 0.2 0.4 08 os 10
Distribution of Sample Means (M=1 samples of size 50) - SE=0.000

B0 0.2 B4 0.6 s 18

0700 o7 0TS WTFs oala 08 w875 0. 200
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True population

Sampling distribution

Shrinks with \/n

Sample 1 - i = 0,796 - SD =0.115

a.0 o2 IJ:! 0.6 0B
Distribution of Sample Means (M=1 samples of size 1000) - SE=0.000

1.0

G.a

0.2

B4 0.6

La

0,70 0.72% 0.750 0ITs 0825 0850

0,875

LR
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Empirical Sample

Sampling distribution

Distribution of a statistic across random samples

0.0

0.2

0.4

0.6

0.8

1.0

OK but | have only
one dataset!

d
N

4 )

Parametric methods

Underlying distribution is
known (e.g. Gaussian)

K Or asymptotic results )
(

Non-parametric
methods

In particular the boostrap
- %




Bootstrap: approximating the sampling distribution

Empirical Sample [size 50)

Bootstrap Sample 1 - 4° = 0.798

Bootstrap Distribution of the Mean (K=1} - SE=0.000

0.0

0.2 0.4 0.6 0.8

You have a sample of size n

1.0 0.0

LIPS 0.4 0.8 0.8 1.0 0700 0725 0750 @775 O08BDD O©E2S 0850 0875 0900

Generate bootstrap samples

Randomly draw n values with
replacement from your sample
Repeat this process many
times (e.g., 9999 times)

Each time, compute the
statistic of interest (e.g., the
mean) on the bootstrap sample

These values form the
bootstrap distribution

This is an approximation of
the sampling distribution of
your statistic.
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Reporting variability: which variability?

Methods
Method 1
Method 2
Method 3

Proposed

Accuracy
0.892 + 0.017
0.895 +0.013
0.883 £ 0.012
0.897 + 0.013

+ what?
At least 3 possibilities

Standard-deviation (SD) of the
metric over the test set

2 | Standard-error (SE) of the

summary statistic

Standard-deviation (SD) over

cross-validation (CV)
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SD from cross-validation

(a) Classification (n = 126)

125

8

Number of articles
-~
(4 ]

14.0% (8)
2 CI* 12.2% (7)
SE-1.7% (1)
Performance Confidence SD SD method
uncertainty estimates reported
reported reported
(b) Segmentation (n = 221)
200
8
§ 150
-
o 2.0% (2)
2 100
£
3
2z
50
0
Performance Confidence sSD SD method
uncertainty estimates reported

reported reported
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SD from cross-validation: how is it computed?

K-fold cross validation
SR . - o s |55 o | [Slsalsls

— _/
~

SD




SD from cross-validation: how is it computed?

Model 1: trained on folds 2 and 3

K-fold cross validation

— _/
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SD from cross-validation: how is it computed?

Model 1: trained on folds 2 and 3

K-fold cross validation

- IS

V — | — _/
dlildated on 10ld 1 '
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SD from cross-validation: how is it computed?

Model 2: trained on folds 1 and 3

K-fold cross validation

Validated on fold 2

69



SD from cross-validation: how is it computed?

Model 3: trained on folds 1 and 2

K-fold cross validation

Validated on fold 3

70



SD from cross-validation: the downside

K-fold cross validation

—

_/

SD is a biased estimator because
of the induced covariance
structure

Y
SD

No Unbiased Estimator of the Variance of K-Fold Cross-Validation

Yoshua Bengio BENGIOY @ TR0 UMONTREAL .CA
Dy, IREY, Lniversitd de Moniréal
O 6l 28, Mowireal, e, HIC 37, Caneda

Y ves Grandvalet YVES. GRANDVALET® UTC FR
Hewdimsve, UME CNES 650
Elwiversié de Technalogie e Compiegne, France

(Bengio and Grandvalet, 2004; Nadeau and Bengio, 2003)




SD from cross-validation: the downside
E.g. Model 1 and Model 2 share fold 3

K-fold cross validation

—

SD is a biased estimator because
of the induced covariance
structure

Y
SD

No Unbiased Estimator of the Variance of K-Fold Cross-Validation

Yoshua Bengio BENGIOY @ TR0 UMONTREAL .CA
Dy, IREY, Lniversitd de Moniréal
O 6l 28, Mowireal, e, HIC 37, Caneda

Y ves Grandvalet YVES. GRANDVALET® UTC FR
Hewdimsve, UME CNES 650
Elwiversié de Technalogie e Compiegne, France

(Bengio and Grandvalet, 2004; Nadeau and Bengio, 2003)




SD from cross-validation: the downside

K-fold cross validation

—

_/

SD is a biased estimator because
of the induced covariance
structure

Y
SD

4 /\ Important consequences )

O No statistical inference (e.g. statistical

testing)

K I'ls only an empirical descriptive statistic j




SD from cross-validation: the benefit

A tool for studying variability of learning procedures

K-fold cross validation

— _/
Y

SD

4 )

SD from CV provides empirical information about variability of a learning
procedure not of the trained model

@ This is still useful information

\_ J




SD from cross-validation: the benefit

A tool for studying variability of learning procedures

K-fold cross validation

— _/
Y

SD

-

\_

You can enrich this information:

letting other factors vary: random seeds, optimized
hyperparameters...
doing more runs/data splits (e.g. repeated shuffle split)
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Back to FDA recommendations: confidence intervals

Methods
Method 1

Method 2
Method 3

Proposed

79.9

79.7

80.1

80.2

DSC
76.6, 82.2]

76.4, 82.3]

76.9, 82.5]

77.1, 82.6,

8.05

3.11

7.91

7.73

HD95

6.85, 9.37

6.93, 9.42

6.71,9.22]

6.65, 8.91]

[....] All performance estimates should be

provided with confidence intervals [...]

FDA-2024-D-4488: Artificial Intelligence-Enabled Device Software
Functions: Lifecycle Management and Marketing Submission
Recommendations

Y U.S. FOOD & DRUG

ADMINISTRATION
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Confidence intervals

Need to be computed from independent test set
Various methods including

SR TaER

Parametric methods Bootstrap

Theoretical guarantees when K Less theoretical guarantees
distributional assumptions met
No distributional
¥ Each summary statistic requires assumptions
special treatment
Can be applied to many

\ / K summary statistics j




Confidence intervals

No guidance on Cl on medical imaging Al
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Confidence intervals

No guidance on Cl on medical imaging Al

Unlike other fields

47 Psychology

Educational and Psychological Measurement

—_—
Imgadt Factor 3.1 # S Year Impact Factor 4.1 louimal Horapage | m

-H- Restriched socess Reseanch anicle First published Febrsany 2005

The Effects of Honnormal Distributions on Confidence Intervals Around the Standardized Mean Difference: Bootstrap and

Parametric Confidence intervals

-

Kir Moy Views  puthors and sHfiliatians

Vilume &5 Issue 1 Fitpstidolong 0.1 13000 3 SN JELEE0

—_ .H. .

— [ eshiemls ﬂ Gl ACEss |:-Ili._ll Cie pricle "_'F.'_t Ehare aplicers @ Irdariratian, fights and pemision IT;I WEnres and ciiEions
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Confidence intervals

No guidance on Cl on medical imaging Al

Unlike other fields

47 Psychology 4> Genetics

GENETICS

Srrend Bogdn o

Educational and Psychological Measurement

tadarmid 0 Epching A a

fuery Marw o] 2

JREE. aNTIA

SR Paar Performance of Bootstrap Confidendce lntervals
Ok frex e I - siish for the Location of a Quantitative Trait Locus
IrHEDED OIS SESNT A AL P IS
o crrm
da'n bl hid | jedde L SFEHTE |
The Effects of Honnormal Distributions on Cox B : Y :
. et § P s i, W | Td. s 1, ] Septvreder ROOE, Papes &0 400
Parametric Confidence intervals A . AT PR
Pybiabed D] bplesda (0 Ll bisbery v
KM Mgy vl 8 BUTHECS ang T basns 7 wi [hw F Persisony =g Shoey @
Yoeme 65 Issue 1 Fitpsdidolong 00 177000 TN
BEFIFRCT
— Ceanfiterig ﬂ el BECEss Ir"*} Cite aricle Chet 3 ol CUET FFTecd Al m i Sor sy th s T aaled
- bt B be 12l Bl LTT1) ] conrd | B o mapicaliones = o eiareisd aivor IEade e
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Confidence intervals

No guidance on Cl on medical imaging Al

Unlike other fields

47 Psychology 4 Genetics 45 Economics

GENETICS

fuery

Educational and Psychological Measurement

Marw o] 2 Srrend Bogdn o

dip 3% P36

Short and Simple Confidancs Intervals When the Directions of Soma Effects Are

JREE. aNTIA Km : d
ML Paor Performance of Bootstrap Confidi Volume 107, lssue 3 T il Bl
- - for the Location of a Quantitative Tradt sy 2055 ey
-u‘ Resiricied Jofess Reseanch anicle First pubdishs m ) : [y S S———— R Tl R eT]
b e Pl | b bl T, Wi I Beaiie W e Fliviim R S LT YA derticts miory
The Effects of Monnormal Distributions on Co ki i pae e » urse] ek
' e i # 1 et o [T, s 1 PRI P 1-48 'ﬁ Cita E POTRALEEE II'CF. Thare « O Voww v
Parametric Confidence intervals ' Fpa—— A AT Fy
Pabinbued L b=t 08 dripate bishery v
Abatract
K Kplley Vebn a8 authors and $Tkacesns wk [kw ¥ Permisoar o Shaey
d Mo i sdaplve corlidence infarssls on o parameier o nleresd in e prosence of rsance
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Confidence intervals

No guidance on Cl on medical imaging Al

/\ Even though we have so many metrics

Image source: https://metrics-reloaded.dkfz.de/

82
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Confidence intervals

Metric distribution
In a few cases, it is known

Accuracy - Binomial Proportion (n=50, p=0.9)

Accuracy follows a
binomial proportion

83



Confidence intervals

Metric distribution
x In most cases, it is not

DsC

i

0775 0800 0825 0850 0875 0500 05925 0550

Some are semi-
continuous
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Confidence intervals

Metric distribution
x In most cases, it is not

HD - Dirac Comb

1y,

T T T T T T
1.5 2.0 2.5 3.0 3.5 4.0

Some are discrete
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Confidence intervals

In the absence of specific guidelines for medical imaging Al

= on the test set results
No distributional assumptions
/\ Test set observations need to be independent

Q Which bootstrap variant to choose?
= Percentile bootstrap: robust (safest choice in the absence of more precise guidance)

Ermnpircad Sample (36 50] Beutstrap Sample 1 - 0" = 0,790 Bootstrap Distribution (K=1) - Cl={0,799.0, T9%]

Confidence Interval

/

[ 1 (=X [ L o o oy 4 oA oLH LD OFD0 OFdy O4%0 D5 OBO0 OB, OHME 08T OL90D




[ Take home messages
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Take home message (1)

Variability reporting is essential for clinical translation

Commonly encountered results tables

Methods
Method 1
Method 2
Method 3

Proposed

Accuracy
0.828
0.821
0.847
0.851

AUC
0.862
0.857
0.889
0.891

The statistical analysis plays a critical role in the

assessment of [...] ML performance but may be

under-appreciated by many ML developers. [...]
There are still publications that present point

estimates of ML performance without quantification
of uncertainties.

Weijie Chen, Daniel Krainak, Berkman Sahiner, Nicholas Petrick, A Regulatory Science
Perspective on Performance Assessment of Machine Learning Algorithms in Imaging, 2023

A U.S. FOOD & DRUG

ADMINISTRATION
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Take home message (2)

Majority of papers do not report variability

200
0
o 150
=t
-;E 2.0% (2)
b 100 R
g 39.0% (39)
E
2
50 —14.9% (7)
12.8% (6]
o 11.0% (1) . 10.6%
Variability reported Cl reported SD reported SD method

- Yes - No Other - Unclear | SD over independent test set SD from CV

Christodoulou, Evangelia, et al. "Confidence intervals uncovered: Are we ready for real-world medical imaging Al?." International Conference on Medical
Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2024.
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Take home message (3)

Claims of outperformance are often unsubstantiated
(a)

>5% probability of false
claims of outperformance

Difference in Accuracy
e
B
Probabllity of False Claims

00 1000
Test Set Size

(a) classification: >86%

(b) segmentation: >53%

2

2

Difference in DSC

MICCAI 2023 papers

Probabllity of False Claims

e
b3

100 1000

Test Set Size ‘ 90



Take home message (4)

AREAS OF
IMPROVEMENT
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Take home message (4)

AREAS OF
IMPROVEMENT

Use appropriate data splitting

Report variability on trained models
using a test set

Bootstrap on the test set is a
reasonable first choice

/\ Community needs guidelines for
variability reporting
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